SCARA Robot Control System

White-Paper Updated: April 2, 2022

Jinil Patel, Group G3-250, ECE, University of British Columbia, VVancouver, BC, Canada
Abstract

The SCARA robotic arm is controlled using 2 tuned PID controller and 1 P controller is used to
achieve 3 degrees of freedom. Motor data from Maxon motors and linearized electrical circuits
imported from Multisim were used to model and simulate the control system in Simulink. In
addition, SimulationX model was paired with Simulink (referred as Co-Sim) to simulate physical
model of the SCARA arm.

Section 1 of this report describes the designing of PID controller in MATLAB and calculation of
control frequency of STM 32 microcontroller. Section 2 describes tuning of PID controller.
Section 3 describes the robot kinematics. Section 4 describes the trajectory planning to pick up
and drop the object at the desired location and within the desired time set by the user. Section 5
describes homing sequence. Section 6 describes the sensor logic and Section 7 integrates all the
sub parts to form control system for SCARA arm.

Nomenclature:

PID: Proportional, Integral, and Derivative
FIR: Finite Input Response

CF: Control Frequencys

FPGA: Field Programmable Gate Array
Motor 1: Shoulder motor

Motor 2: Elbow motor

Requirements:

Rise time < 0.3 seconds
Overshoot < 10%
Steady-Statete error < 1%
User input position and speed
Automatic Path Generation
Homing Sequence

YVVVVYVY

Constraints:

> Movement of the second arm should be limited between _7“ tog

1. PID Controller
The PID controller has three parts: Proportional (P), Integral (1), Derivative (D).
The P part of the PID controller is calculated as:
Propotional = Error

The | part of the PID controller is sum of error over time and represents accumulated error that
has been corrected.

Error + Previous Error
2

The D part of the PID Controller requires implementing FIR Filter to limit the high frequency
gain and noise resulting in following equation:

Integral = Integral +

sample points

Derivative = z Scaling * p * e P**dt 4
i=1

new error — previous error
dt

Where Scaling is normalization for filter coefficients, p * e "P**4¢ js time domain representation
of low pass filter with pole p = 2*CF which is convoluted with the derivative.

Output of the PID controller is given by:
Output = Kp * Propotional + Ki x Integral + Kd * Derivative

The figure below compares the user-generated PID code’s step response with Simulink PID
block.

12F T T T T T 1 1.0045 F

1 1.094 -

08 1
1.0935 |

06+
1.003 -
04+

1.0825 |-
02r-

| 1082t

Offset=0 Offset=0

Figure 1: Comparison between Simulink PID Block (Blue Curve) and User generated PID Block (Red Curve). Figure on the right is zoomed in
version for differentiating between the two PID’s.

The Matlab code was then translated into C code and Control Frequency was calculated from the
look up table based upon the number of clock cycles for command execution. Please refer to
appendix for both MATLAB and C code.

One time execution of C code takes 730 clock cycles.

Total cycles = 730*2 = 1460

ISR rate =

STM 32 Clock Frequency

Total Cycles

=72 * —— = 49,315Hz

106
1460

ISR rate used is 24,658 Hz or Ts = 40.5 s to give code roughly double the time then it requires.

2. PID Tuning

Each motor was tuned separately using 10 step process. Once the estimated gain values were
obtained heuristic tuning was used to get the desired response from the motors. Rise time and
overshoot was minimized while keeping in check that steady state error does not exceed 1%. The
tuning was done by using step function as smooth curves are not ideal for mimicking sudden
input signal changes. After achieving desired response both motors were individually tuned
using Co-sim and finally integrated together to simulate the physical model of SCARA arm.

Figure below shows Simulink model used for tuning the motors. Both motors had similar models
with different parameters.

] =
(o5 {H
<z
Figure 2: Simulink model for tuning the motor.
K Kp Ki Kd
Simulink 53.3710 0.3669 0.05 0.0336
Co-Sim 0.3 1.1669 0.00005 0.3936
Table 1: Motor 1 Gain values
K Kp Ki Kd
Simulink 53 0.1669 0.29 0.336
Co-Sim 0.3 1.1669 0.0005 0.03936

Table 2: Motor 2 Gain values

Figure 3: Co-Sim Tuned response of motor 1 Figure 4: Co-Sim Tuned response of motor 2

3. Robot Kinematics

Hand calculations were done to generate inverse kinematics and direct kinematics block. The
direct kinematics block and inverse kinematics block were tested by cascading together and
checking the output in the scope. Figure 5 shows the test setup and results. Please refer to
appendix for MATLAB code and hand calculation for direct and inverse kinematics.

=)
. X0 thetat theta_1 x
4
eeeeee kinematics direct_kinematics
=
. >0 theta2 > theta_2 y »
P S— : e
014 -
008 [
012
006 - 01
0.08 -
004 - 0.06 -
0.04
002
002
0 0
0 0.5 1 15 2 25 3 3.5 4 45 5 0 0.5 1 15 2 25 3 35 4 45 5

Figure 5: Output of direct kinematics block (red), desired output (blue)

4. Trajectory planning and Homing Sequence

The trajectory planning sub-system takes the coordinates of position 1, position 2 and time in
which user wants to go from position 1 to position 2. Inverse kinematics is performed on the
coordinates of the two position to get the desired angle. The path_planning block generates
the cubic function for path by computing coefficients of following equations:

Path=axt3+b*t>*+cxt+d
Differentiating above equation gives
Velocity =3 *axt>+2+bxt+c
Know variables are Position 1, Position 2, and initial velocity = final velocity = 0 m/s

Using above information path can be calculated to go from position 1 to position 2. Figure 5
shows the trajectory planning sub system, figure 6 and 7 shows tuned motors tracing the path
generated by the trajectory planning sub system.

Figure 6: Trajectory Planning Sub-System

Voltage
T

02

702—\
AN

.04+

Figure 6: Trajectory Planning Sub-System generated path for motor 1 (blue). Output of the controller (red) for motor 1

Voltage

L
] 5 10 15 20 25 30

Figure 7: Trajectory Planning Sub-System generated path for motor 2 (blue). Output of the controller (red) for motor 2
Please refer to MATLAB code path_planning in appendix for homing logic implementation

5. Homing Sequence

Homing sensor signal is set high when the motor 1 is at 0 and motor 2 is atg (homing

position). If the robot is powered on in non-homing position the motor 1 starts to sweep -n
radians and when it reaches home, homing sensor signal becomes high which is sent to

FPGA to reset the counter. Motor 2 starts to sweep -x radians as well, because home is atg

range of motion for motor two is between _7" to g To demonstrate homing logic, in figure 5,

I am manually setting homing sensor signal to 0 which indicates we are not at home. | am
also manually entering q0_homing position which is random starting point when SCARA is
powered on. This results in sudden jerk at 0 seconds as simulation does not allow to start
from non-zero position. The two signals g0_homing and gf_homing will be discarded in
microcontroller implementation as they are just for demoing. It can be observed from figure
8 that when SCARA is powered on from non-zero position it first homes itself and then
follows the path generated by path_generating.

Voltage Voltage
: T T T T T

| |
0 5 10 15 20 25 30

Figure 8: Homing Logic for motor 1 (blue curve). Output of controller (red) on left. Homing logic for motor 2 on right
Please refer to MATLAB code path_planning in appendix for homing logic implementation
6. Sensor Logic

For the sensor we have used FPGA to keep track of motor position. In the feedback look we
have sensor resolution of 500/(2*r). The signal is passed through sensor filter to eliminate
the noise. The C function get_angle() receives the count value from the shift register used in
FPGA. The value of count is converted to decimal number and then actual angle is calculated
using following formulas:

2T
500

Actual Angle for motor 1 = (500 — count) *

s 21
Actual Angle for motor 2 = > + (500 — sum) * 00

The (500 — count) term in the equations is a result of implementation of quadrature decoder.
Inside quadrature decoder 500 corresponds to O degrees to deal with negative numbers in
Verilog. The homing position for second motor is at 90° which is accounted for in second
equation. Please refer to appendix for C code.

7. SCARA robot control system

ﬁfJ_I‘:’

Figure 9: SCARA Robot Control System without bonus part

Appendix
1. PID MATLAB Code

function output = PID_X(new_error)

persistent previous_error
persistent integral_term
persistent derivative
persistent convolution_filter

F = 24658;
p = 2*%CF;
dt = 1/CF;
K = 4.6666;
Ki = 0.008;
Kd = 20.8;

sample_points = 8;

if isempty(previous_error) % initialize all the variables
previous_error = 0;
integral_term = @;
derivative = zeros(1,sample_points);
convolution_filter = zeros(1,sample_points);
L_norm = ©;

for i = 1:sample_points

L_norm = L_norm + p*exp(-p*i*dt); % get the denominator to perform L1 Normalization to handle overflow
end
scaling = 1/L_norm; % get scaling factor for L1 Norm
for i = 1:sample_points

convolution_filter(i) = scaling*p*exp(-p*i*dt); % get real time impulse response for low pass filter
end

end

derivative(2:sample_points) = derivative(l:sample_points-1); % store derivative in reverse order to perform convolution and that way we can remove
derivative(1) = (new_error - previous_error)/dt; % calculate the derivative

derivative_term = dot(derivative,convolution_filter); % convolute derivative signal with filter impulse response
integral_term = integral_term + dt*(previous_error + new_error)/2; % compute integral
propotional_term = new_error; % proptotional

previous_error = new_error; % new error is stored in previous error for future computation
output = K*propotional_term + Ki*integral_term + Kd*derivative_term; % output of the PID controller

2. C code for PID and Sensor Logic

1 void setup() //initialize all the variables

2|{

3 previous_error = 9;

4 integral_term = 0;

5 derivative_term = 0;

6 for(i = @; i<8; i++)

7 {

8 derivative[i] = 0;

9 }

10

11 for(i = @; i<8; i++) //get the denominator to form L1 Norm to handle overflow
12 {

13 L_norm = L_norm + p*exp(-p*i*dt);

14 }

15

16 scaling = 1/L_norm; //get scaling factor for L1 Norm
17

18 for(i = @; i<8; i++)

19 {
20 convolution_filter[i] = scaling*p*exp(-p*i*dt); //Digital low pass filter in time

domain
21 }

22}

23
24 \void loop() //PID Code

25 |{

26 float current_angle;

27 desired angle = analogRead(1);

28 current_angle = get_angle(); //read from Pin 1

29 new error = desired_angle - current_angle;

30

31 for(i = 7; i>7; i--)

32 {

33 derivative[i] = derivative[i-1]; // store derivative in reverse order to perform
convolution and that way we can remove the oldest sample first

34

35

36 derivative[@] = (new_error - previous_error)/dt; // Compute Derivative

37

38 for(i = ©; i < 8; i++)

39 {

40 derivative_term = derivative_term + derivative[i]*convolution_filter[i]; //Convolute
derivative signal with impulse response of low pass filter

41

42

43 integral_term = integral_term + dt*(new_error + previous_error)/2; // Compute integral

a4

45 propotional_term = new_error; //compute propotional term

46

47 previous_error = new_error; //new error is stored in previous error for future computation

48

49 output = K*propotional_term + Ki*integral_term + Kd*derivative_term; //output of PID
controller

50

51 analogWrite(2) //o utput at pin 2
52 delay(#)

53

54| }

55

56 | float get_angle(int motor) //sensor logic

57|{

58 int i;

59 int sum = 9;

60 float actual_angle;

61 encoded_signal = get_count(); //get count sets the clock to read from shift register

62

63 for(i = 0; i <10; i++)

64 {

65 sum = sum + (encoded_signal % 1@)*2~i; //convert binary count into decimal

66 }

67

68 if(motor == 1)

69 {

70 actual_angle = (500 - sum)*2*3.14/500; //if it is motor one compute the angle as home
is @ degrees

71 }

72 else

73 {

74 actual_angle = pi/2 + (500 - sum)*2*3.14/500; //if it is second motor add pi/2 as
homing is at pi/2

75

76 return(actual_angle)

770}

3. Inverse Kinematics Calculation

-
>

B o

%
onte youm howe T, We Conm get Bofin fWs camn B will be W becamsn clockwise &

I9.= 0,- 8 Lim s conn smce O, is -va it becowun Opt 6,3

I B s a'aqlc 2arcos (0D {get O, grom hernk I

I O, - tan™ () |

l T a4 bt —2abcos(E,D = qet B

150 S

Inverse Kinematics Code

function

c o
nou

[thetal, theta2] = inverse_kinematics(x0,y®)

110*107-3; %arm 1 length
140*107-3; %arm 2 length

rl = sqrt(xe”*2+yoe~2);

thetaX =

atan(ye/xe);

argl = (a”2 + r1”2 - b”*2)/(2*a*rl);
argl = max(min(argl,1),-1);

thetao =

thetal =

acos(argl);

thetaX - theta®; %arm 1 angle

arg2 = (a2 + b”2 - ri1n~2)/(2*a*b);
arg2 = max(min(arg2,1),-1);

theta3

theta2 =

acos(arg2);

pi - theta3; %arm 2 angld

Direct Kinematics Calculation

\‘._. 0N ‘; .‘, (A
SNt T _:: BLL _ = T
3 /
&

54
o o = ‘—--—-;\: -—‘;\——--—_ o _....S‘ jda
i \ O, 3 é

By By

= A, r A, = acosO, + becoasC150-6, -6,D

- acos®, v becosC B, 6,3

sin(®) = Aqa o A= asin &
e

dg = bsinliIgo-6,-6,D = bsinle;+6D

e asin®, + bsin(B,+6,D

6. Direct Kinematics Code
function [x, y] = direct_kinematics(theta_1,theta_2)

QO
I

110*107-3; %arm 1 length
140*10~-3; %arm 2 length

o
|

x
]

a*cos(theta_1) + b*cos(theta_2 + theta_1);
a*sin(theta_1) + b*sin(theta_1 + theta_2);

<
|

7. Path Planning MATLAB Code

function qdi = path_generating(home_sig, qf_homing, q@_homing, q@, qf, tin, time_in_pos)
persistent count;

persistent previous_pos;

persistent return_trag;

persistent homing_logic;

persistent return_trag_home;

if isempty(count) %initialize
count = 9;
previous_pos =0;
return_trag = false;
homing_logic = true;
return_trag_home = false;
end
if(home_sig == 1)
home_signal = true;
else
home_signal = false;
end

to
tf in;
t = count/24658;

0;

if(t>tin)
if(t>tin+time_in_pos) %if the time exceeds time to take to go from position 1 to position 2 and hold time then reset the time
count = @;
T=:0;
return_trag = ~return_trag;

if (return_trag_home) %if going from position 1 to position 2 now go from position 2 to position 1
return_trag_home = false;
end
if(homing_logic) %make homing logic false if it was true before. This is just for demo. In implementation homing sensor logic will take ca
homing_logic = false;
return_trag_home = true;
end
else
qdi = previous_pos; %initial position = previous position
d_qdi = @; % velocity at initial position is ©
count = count + 1;
return
end

if(homing_logic == true)
q0 = [q0_homing,0]; % if homing logic is true prioritize homing
qf = [qf_homing,0];
if(home_signal == true)
%current_agle = @ // update postion (only in c code)
homing_logic = false;
return_trag_home = true;
return_trag = ~return_trag;

temp = q0;
g0 = [qf_homing,0];
qf = [temp,@];
end
elseif(return_trag_home == true)
temp = q0@; %if following path and reached postion 2 from position 1 then interchange the coordinates to go from position 2 to position 1
q0 = [qf_homing,0];
qf = [temp,0];
elseif(return_trag == false) %else go from position 1 to postion 2
98 = [q0,0];
qf = [qf,0];
else
temp = q0;
g@ = [qf,0];
qf = [temp,0];
end
X = zeros(4, 4); %initialize time vector for equation position = a*t”3 + b*t"2 + c*t + d
B = zeros(4, 1); %inintialize B vector
% generate X matrix
X(1, 1) =1;
X(1, 2) = to;
X(1, 3) = ter2;
X(1, 4) = ter3;
X(2, 1) = o;
X(2, 2) = 1;
X(2, 3) = 2 * to;
X(2, 4) = 3 * tor2;
X(3, 1) = 1;
X(3, 2) = tf;
X(3, 3) = tf 2;
X(3, 4) = tfr3
X(4, 1) = 0;
X(4, 2) = 1;
X(4, 3) = 2 * tf;
X(4, 4) = 3 * tfA2

%generate B matrix
B(1, 1) = go(1);

B(2, 1) = q0(2);
B(3, 1) = qf(1);
B(4, 1) = gf(2);

%solve for coefficients
A = X\B;

a = [A(1, 1), A(2, 1), A(3, 1), A(4, 1)];

qdi = a(1) + a(2) * t + a(3) * t*2 + a(4) * t73;
previous_pos = qdi;

d_qdi = a(2) + 2 * a(3) *t + 3 * a(4) * tr2;
count = count + 1;

return

end

