
SCARA Robot Control System

White-Paper Updated: April 2, 2022

Jinil Patel, Group G3-250, ECE, University of British Columbia, Vancouver, BC, Canada

Abstract

The SCARA robotic arm is controlled using 2 tuned PID controller and 1 P controller is used to

achieve 3 degrees of freedom. Motor data from Maxon motors and linearized electrical circuits

imported from Multisim were used to model and simulate the control system in Simulink. In

addition, SimulationX model was paired with Simulink (referred as Co-Sim) to simulate physical

model of the SCARA arm.

Section 1 of this report describes the designing of PID controller in MATLAB and calculation of

control frequency of STM 32 microcontroller. Section 2 describes tuning of PID controller.

Section 3 describes the robot kinematics. Section 4 describes the trajectory planning to pick up

and drop the object at the desired location and within the desired time set by the user. Section 5

describes homing sequence. Section 6 describes the sensor logic and Section 7 integrates all the

sub parts to form control system for SCARA arm.

Nomenclature:

PID: Proportional, Integral, and Derivative

FIR: Finite Input Response

CF: Control Frequencys

FPGA: Field Programmable Gate Array

Motor 1: Shoulder motor

Motor 2: Elbow motor

Requirements:

➢ Rise time < 0.3 seconds

➢ Overshoot < 10%

➢ Steady-Statete error < 1%

➢ User input position and speed

➢ Automatic Path Generation

➢ Homing Sequence

Constraints:

➢ Movement of the second arm should be limited between
−π

2
 to

π

2

1. PID Controller

The PID controller has three parts: Proportional (P), Integral (I), Derivative (D).

The P part of the PID controller is calculated as:

𝑃𝑟𝑜𝑝𝑜𝑡𝑖𝑜𝑛𝑎𝑙 = 𝐸𝑟𝑟𝑜𝑟

The I part of the PID controller is sum of error over time and represents accumulated error that

has been corrected.

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 = 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 +
𝐸𝑟𝑟𝑜𝑟 + 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐸𝑟𝑟𝑜𝑟

2

The D part of the PID Controller requires implementing FIR Filter to limit the high frequency

gain and noise resulting in following equation:

𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 = ∑ 𝑆𝑐𝑎𝑙𝑖𝑛𝑔 ∗ 𝑝 ∗ 𝑒−𝑝∗𝑖∗𝑑𝑡 ∗
𝑛𝑒𝑤 𝑒𝑟𝑟𝑜𝑟 − 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑒𝑟𝑟𝑜𝑟

𝑑𝑡

𝑠𝑎𝑚𝑝𝑙𝑒 𝑝𝑜𝑖𝑛𝑡𝑠

𝑖= 1

Where Scaling is normalization for filter coefficients, 𝑝 ∗ 𝑒−𝑝∗𝑖∗𝑑𝑡 is time domain representation

of low pass filter with pole p = 2*CF which is convoluted with the derivative.

Output of the PID controller is given by:

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐾𝑝 ∗ 𝑃𝑟𝑜𝑝𝑜𝑡𝑖𝑜𝑛𝑎𝑙 + 𝐾𝑖 ∗ 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 + 𝐾𝑑 ∗ 𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒

The figure below compares the user-generated PID code’s step response with Simulink PID

block.

Figure 1: Comparison between Simulink PID Block (Blue Curve) and User generated PID Block (Red Curve). Figure on the right is zoomed in

version for differentiating between the two PID’s.

The Matlab code was then translated into C code and Control Frequency was calculated from the

look up table based upon the number of clock cycles for command execution. Please refer to

appendix for both MATLAB and C code.

One time execution of C code takes 730 clock cycles.

Total cycles = 730*2 = 1460

ISR rate =
𝑆𝑇𝑀 32 𝐶𝑙𝑜𝑐𝑘 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝑇𝑜𝑡𝑎𝑙 𝐶𝑦𝑐𝑙𝑒𝑠
= 72 ∗

106

1460
= 49,315Hz

ISR rate used is 24,658 Hz or Ts = 40.5 µs to give code roughly double the time then it requires.

2. PID Tuning

Each motor was tuned separately using 10 step process. Once the estimated gain values were

obtained heuristic tuning was used to get the desired response from the motors. Rise time and

overshoot was minimized while keeping in check that steady state error does not exceed 1%. The

tuning was done by using step function as smooth curves are not ideal for mimicking sudden

input signal changes. After achieving desired response both motors were individually tuned

using Co-sim and finally integrated together to simulate the physical model of SCARA arm.

Figure below shows Simulink model used for tuning the motors. Both motors had similar models

with different parameters.

Figure 2: Simulink model for tuning the motor.

 K Kp Ki Kd

Simulink 53.3710 0.3669 0.05 0.0336

Co-Sim 0.3 1.1669 0.00005 0.3936

Table 1: Motor 1 Gain values

 K Kp Ki Kd

Simulink 53 0.1669 0.29 0.336

Co-Sim 0.3 1.1669 0.0005 0.03936

Table 2: Motor 2 Gain values

Figure 3: Co-Sim Tuned response of motor 1 Figure 4: Co-Sim Tuned response of motor 2

3. Robot Kinematics

Hand calculations were done to generate inverse kinematics and direct kinematics block. The

direct kinematics block and inverse kinematics block were tested by cascading together and

checking the output in the scope. Figure 5 shows the test setup and results. Please refer to

appendix for MATLAB code and hand calculation for direct and inverse kinematics.

Figure 5: Output of direct kinematics block (red), desired output (blue)

4. Trajectory planning and Homing Sequence

The trajectory planning sub-system takes the coordinates of position 1, position 2 and time in

which user wants to go from position 1 to position 2. Inverse kinematics is performed on the

coordinates of the two position to get the desired angle. The path_planning block generates

the cubic function for path by computing coefficients of following equations:

𝑃𝑎𝑡ℎ = 𝑎 ∗ 𝑡3 + 𝑏 ∗ 𝑡2 + 𝑐 ∗ 𝑡 + 𝑑

Differentiating above equation gives

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 = 3 ∗ 𝑎 ∗ 𝑡2 + 2 ∗ 𝑏 ∗ 𝑡 + 𝑐

Know variables are Position 1, Position 2, and initial velocity = final velocity = 0 m/s

Using above information path can be calculated to go from position 1 to position 2. Figure 5

shows the trajectory planning sub system, figure 6 and 7 shows tuned motors tracing the path

generated by the trajectory planning sub system.

Figure 6: Trajectory Planning Sub-System

 Figure 6: Trajectory Planning Sub-System generated path for motor 1 (blue). Output of the controller (red) for motor 1

Figure 7: Trajectory Planning Sub-System generated path for motor 2 (blue). Output of the controller (red) for motor 2

 Please refer to MATLAB code path_planning in appendix for homing logic implementation

5. Homing Sequence

Homing sensor signal is set high when the motor 1 is at 0 and motor 2 is at
π

2
 (homing

position). If the robot is powered on in non-homing position the motor 1 starts to sweep -π

radians and when it reaches home, homing sensor signal becomes high which is sent to

FPGA to reset the counter. Motor 2 starts to sweep -π radians as well, because home is at
π

2

range of motion for motor two is between
−π

2
 to

π

2
. To demonstrate homing logic, in figure 5,

I am manually setting homing sensor signal to 0 which indicates we are not at home. I am

also manually entering q0_homing position which is random starting point when SCARA is

powered on. This results in sudden jerk at 0 seconds as simulation does not allow to start

from non-zero position. The two signals q0_homing and qf_homing will be discarded in

microcontroller implementation as they are just for demoing. It can be observed from figure

8 that when SCARA is powered on from non-zero position it first homes itself and then

follows the path generated by path_generating.

Figure 8: Homing Logic for motor 1 (blue curve). Output of controller (red) on left. Homing logic for motor 2 on right

Please refer to MATLAB code path_planning in appendix for homing logic implementation

6. Sensor Logic

For the sensor we have used FPGA to keep track of motor position. In the feedback look we

have sensor resolution of 500/(2*π). The signal is passed through sensor filter to eliminate

the noise. The C function get_angle() receives the count value from the shift register used in

FPGA. The value of count is converted to decimal number and then actual angle is calculated

using following formulas:

𝐴𝑐𝑡𝑢𝑎𝑙 𝐴𝑛𝑔𝑙𝑒 𝑓𝑜𝑟 𝑚𝑜𝑡𝑜𝑟 1 = (500 − 𝑐𝑜𝑢𝑛𝑡) ∗
2𝜋

500

𝐴𝑐𝑡𝑢𝑎𝑙 𝐴𝑛𝑔𝑙𝑒 𝑓𝑜𝑟 𝑚𝑜𝑡𝑜𝑟 2 =
𝜋

2
+ (500 − 𝑠𝑢𝑚) ∗

2𝜋

500

The (500 – count) term in the equations is a result of implementation of quadrature decoder.

Inside quadrature decoder 500 corresponds to 0 degrees to deal with negative numbers in

Verilog. The homing position for second motor is at 900 which is accounted for in second

equation. Please refer to appendix for C code.

7. SCARA robot control system

Figure 9: SCARA Robot Control System without bonus part

Appendix

1. PID MATLAB Code

2. C code for PID and Sensor Logic

3. Inverse Kinematics Calculation

4. Inverse Kinematics Code

5. Direct Kinematics Calculation

6. Direct Kinematics Code

7. Path Planning MATLAB Code

